
  

  

Abstract— With a rapidly aging population, the demand 
for long-term care services is also significantly increasing. 
However, services such as cognitively and socially 
stimulating group activities for residents are neglected due to 
the lack of care staff. The objective of our research is to 
develop socially assistive robots in order to autonomously 
facilitate such cognitive and social interventions. In this 
paper, we present the development of a novel system 
architecture for a social robot to learn from non-expert 
demonstrators (e.g. care staff) to facilitate group activities 
with multiple residents. A demonstration from learning 
approach is used, where the demonstrator demonstrates the 
facilitation of a group activity using an activity simulator that 
models the social robot, the users, and the activity itself. The 
mapping between the activity states and the robot’s behaviors 
are then learned from the demonstrations using a decision-
tree based activity learning system. System performance 
experiments were conducted using the system architecture 
with the robot Tangy to first learn the cognitive and social 
group activity of Bingo and then use the learned activity to 
physically facilitate Bingo games with multiple users. The 
results showed the approach was able to accurately and 
efficiently learn the new Bingo activity.      

I. INTRODUCTION 

It is projected that by 2050 the proportion of the world 
population 60 years or older will more than double from 841 
million in 2013 to 2 billion [1]. This demographic change 
will lead to an increase in demand for long-term care homes 
and services due to the natural decline in social, cognitive 
and physical capabilities of aging older adults [2]. However, 
long-term care homes are already understaffed and unable to 
handle all the services needed by older adults [3]. As a prime 
example, it is already a major concern among healthcare 
professionals that services such as cognitive and social 
activities for residents in long-term care facilities are being 
neglected [3],[4]. Numerous studies have demonstrated the 
importance of such activities which include both informal 
(e.g. conversations with staff, family and friends) and formal 
social leisure activities (e.g. participation in group 
recreational programs) in the daily lives of older adults. They 
have found that these activities are important to protect 
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residents’ cognitive health as well as mitigate the effects of 
functional limitations, perceptions of disability, and 
depressive symptoms [5].  

With respect to formal group activities, currently, social 
robots are being developed and implemented successfully in 
long-term care homes to facilitate group recreational 
activities including Bingo and Hoy [6],[7], sing-alongs and 
logic games [8], and ball throwing games [9]. The majority of 
these robots are either teleoperated by a human operator or 
not fully automated, with the exception of our socially 
assistive robot Tangy which can autonomously facilitate 
Bingo games by calling out numbers, sensing players and 
Bingo cards, and identify user assistance requests [6].  

A recent study conducted by our research group 
investigated the impressions and design considerations long-
term care residents, family, and healthcare professionals had 
on our robot Tangy facilitating the group leisure activity of 
Bingo [10]. The majority of participants wanted to see the 
robot facilitate a number of group activities in addition to 
Bingo including sing-alongs and trivia. Furthermore, they 
suggested that additional activities could be included by staff 
after the robot was deployed in the long-term care home. 
However, current social robots are limited to a set of a priori 
known activities that have been previously programmed by 
human experts. Hence, the aforementioned request presents a 
new challenge: instead of having a limited set of a priori 
programmed group activities, robots should be capable of 
learning new activities while deployed in long-term care 
homes from non-expert humans in order to adapt to the needs 
of the home. 

This research focuses on designing socially assistive 
robots capable of autonomously facilitating group social 
leisure activities for residents in long-term care facilities to 
improve their overall cognitive capabilities and to expand 
their social networking opportunities. Our goal is to design 
robotic technology that is easy to use, acceptable, and 
adaptive to the long-term care settings that the robots are 
deployed in. Therefore, we aim to develop robots capable of 
learning new stimulating group activities from non-expert 
users (such as staff) and facilitating these learned activities 
autonomously with residents.  

In this paper, we present a demonstration learning system 
architecture for Tangy in order for the robot to be able to 
learn new group activities when needed from demonstrations 
conducted by non-experts. Namely, the system architecture 
has a learning system to obtain a control policy (activity state 
to robot behavior mapping) from demonstrations conducted 
by a non-expert in a simulator. The policy is then used by the 
physical robot to facilitate the learned group activity with a 
group of users in a real environment.  
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II.       RELATED WORK 

Robot learning allows a robot to learn in an on-line 
manner primitive actions or tasks, where the latter consists of 
a series of actions. Three main methods have been used to 
teach a robot: 1) Learning from Demonstration (LfD), 2) 
Active Learning (AL), and 3) Mixed Initiative (MI) Learning.  

LfD allows a robot to learn by observing a teacher while 
he/she demonstrates the specific task or action [11]. This 
method has been used to teach robots to dance [12], 
implement certain arm motions [13], and the pick-and-place 
of objects [14]. For example in [12], the Robota doll robot 
was taught different dance patterns using its head and arms, 
as well as keyboard key labels for the dance patterns. Infrared 
sensors on the teacher captured the necessary arm and head 
movements to provide to Robota to mimic.  After the dance 
pattern was completed, a label via a single key input on a 
keyboard was provided by the teacher. A second scenario 
was implemented where the robot was taught a combination 
of keys as the sentence label to describe its actions as well as 
its perceptions of touch on its different body parts. A winner-
takes-all network was then used to map the actuator joints 
and perceptions of touch (via switches) to the labels. 
Experiments determined that the robot was not only able to 
learn explicit associations but implicit ones as well, for 
example, concepts of individual words like arm, foot, left, 
right could be understood by teaching full sentences.  

In [13], the humanoid robot Simon was taught arm 
motions using a Keyframe LfD approach which broke down 
the overall skill to learn into smaller keyframes that were 
demonstrated. A Gaussian Mixture Model was used to learn 
an arm motion path. Experiments were presented with 34 
teachers teaching the robot various motions such as saluting 
and inserting a block into a hole using kinesthetic teaching. 
Performance study results comparing keyframe LfD to 
trajectory learning LfD (where the skill was not broken 
down) found that keyframe LfD reduced unintentional 
movements, however, a single demonstration by the teachers 
was enough to teach the skill using trajectory learning LfD.  

AL has also been used to teach a robot to label objects 
[15]. AL differs from LfD in that after every step throughout 
the teaching process, a robot can query the teacher about the 
task or action being learned [15]. In [15], different active 
learning methods were compared in teaching the Simon robot 
labels for a combination of simple shapes, for example, a 
triangle on a square was labeled a house. A query-by-
committee approach was used as the active learning method. 
Experiments with 24 participants were presented and 
compared with different conditions for robot queries as well 
as the case where there were no robot queries. The results 
showed that AL required less time and number of steps than 
the other methods to teach the labeling of a combination of 
simple shapes.  

 MI Learning is an extension of AL in that during 
learning, a robot can also query a teacher, however, only 
when certain conditions are met, e.g. reaching an unknown 
state [15]. The approach has been used to teach robots to turn 
on a series of lights [16], learn and grasp objects [17], as well 

as to learn body movements [18]. In [16], the Leo robot was 
trained by a human instructor through voice commands to 
turn on and off LEDS using colored buttons. A Bayesian 
likelihood method was used during learning to determine the 
best action for the robot. When Leo was asked to execute a 
task, it determined a confidence value for each set of known 
actions to determine the best action. If the confidence for the 
best action was too low, it would express tentativeness by 
glancing at the teacher and the object while performing the 
action. Once Leo finished an action it would lean forward 
and perk its ears up for feedback on the task, which is 
provided via voice commands from the teacher. This learning 
approach was successful in communicating the robot’s 
internal states to the human teacher through facial expression 
throughout the interaction. In [18], the robotic dog Aibo used 
a combination of LfD and MI learning, defined as dogged 
learning, to learn how to mirror the motions of its tail to its 
head. Using Locally Weighted Projection Regression as the 
learning algorithm and preprogrammed controllers in the 
place of a human demonstrator, the robot was taught via 
kinesthetic tele-operation to have its head movements mirror 
the movements of its tail. Experiments using two teachers 
who demonstrated different motions to the robot showed that 
the robot was able to merge these behaviors into a single 
task. The learning approach was also successfully 
implemented for a ball seeking task. 

The aforementioned work has verified that robots can 
effectively learn a priori unknown tasks using different 
learning methods. With respect to social HRI, the 
demonstrations have used natural communication between a 
robot and a human teacher to achieve task learning, e.g. 
dialogue systems using verbal commands from the 
demonstrator. However, for the majority of applications, the 
task that the robot was learning to implement itself was not 
necessarily social and the intended application was with only 
one person after learning was completed. Our problem differs 
in that we aim to have the socially assistive robot Tangy learn 
a social activity that needs to be autonomously facilitated 
with a group of older adults. 

III. THE SOCIAL ROBOT TANGY 

Tangy is a humanoid robot with a human-like upper torso 
and a differential drive mobile base, Fig. 1. Namely, Tangy 
has a six degree of freedom (DOF) animated head with two 
DOF for nodding and shaking, two DOF for each individual 
eye to pan left and right, one DOF for tilting the eyes up and 
down together, and one DOF for opening and closing the 
mouth. Mounted on the torso are two six DOF arms that 
allow Tangy to perform arm gestures. Each arm has two DOF 
joints in its shoulder, elbow, and wrist as well as a two DOF 
gripper. Tangy communicates verbally using a synthesized 
female voice. Tangy’s chest mounted tablet is used to display 
activity related written messages and images. Tangy obtains 
information with respect to the activity and its environment 
using a combination of sensors including a laser range finder, 
two 2D cameras and an IR camera. The robot is also capable 
of autonomously navigating in an indoor environment using 
the ROS navfn planner [19].  
 



  

 
Figure 1.  The social robot Tangy. 

IV. DEMONSTRATION LEARNING SYSTEM ARCHITECTURE 

The objective of our activity learning scenario is to have a 
non-expert human demonstrator demonstrate a social group 
activity to Tangy using an LfD approach. Since we are 
focusing on task-level learning [16], Tangy has a set of 
known behaviors and the goal for the demonstrator is to teach 
the robot a new task that is not known a priori using these 
behaviors.  

Our proposed system architecture for Tangy is presented 
in Fig. 2. For robot learning, an activity simulator is used to 
represent the activity scenario including the robot and the 
users (e.g. the group of residents). We have chosen to use a 
simulated environment representation of the activity in order 
to improve the efficiency of learning and reduce 
demonstrator fatigue [20]. Furthermore, we can train the 
robot without having to subject the group of elderly users to 
long training sessions. The demonstrator controls the robot’s 
behaviors during learning by using speech input and a 
graphical user interface (GUI) to observe the world state (i.e. 
defined to be a function of the robot, users and activity 
models)  in real-time. Once an activity from start to end is 
demonstrated, the sequence of executed behaviors and their 
corresponding activity states are passed to the activity 
learning module. This is known as the demonstration 
trajectory. The activity learning module then learns the policy 
(activity state-behavior mapping) for the activity. The learned 
policy is then used by the interaction system to implement 
Tangy’s physical behaviors in the real world using sensory 
information regarding the world state parameters during a 
robot facilitated social group activity. 

A.   Speech Identification 
The demonstrator uses voice commands to provide the 

sequence of activity behaviors needed for Tangy to complete 
the activity. Speech identification is achieved by using the 
Pocket Sphinx speech decoder [21] to match words in the 
decoded utterances to keywords associated with known robot 
behaviors. Namely, Pocket Sphinx passes the utterances into 
the acoustic model. The acoustic model labels the phonemes 
using a Hidden Markov Model and then matches the 
phonemes to words before being passed through the language 
model, which determines the sequence of words. The 
sequence of words are then matched to the robot behavior 
keywords and the demonstrator is prompted on the GUI to 
verify if the identified robot behavior command is correct 
prior to being sent to the activity simulator module. Namely, 
the user is displayed a message on the GUI depicting the 

behavior command identified by the speech identification 
module and prompted to verify if the identified command is 
correct by typing yes/no on a keyboard. 

 
Figure 2.  System Architecture for Activity Learning and Implementation. 

B.    GUI 
 The GUI illustrates the world state provided by the 

activity simulator. Namely, the robot and users are depicted 
as virtual agents and their behaviors are shown in real-time 
on the screen as the world state is updated based on the 
demonstrator’s voice commands.      
C.   Activity Simulator 

The Activity Simulator module consists of models for the 
robot, R, the activity, A, and the group of users, U.  

1)  Robot  Model  
The robot is modelled as a simulated agent with a set of 

known primitive behaviors, B={b1, b2, … bm}, where m is the 
total number of behaviors. These discrete primitive behaviors 
are defined to be a function of robot actuator positions (θ), 
speech (sph), and visual content (img): 

),,( iiii imgsphfb θ= , where i is a primitive behavior. 

2) User  Model  
The multiple users in the group activity are modelled as a 

set of users, U={u1, u2,… un}, where n is the total number of 
users participating in an activity at one time. Each user, ur

 = 
{ID, sua, sh, l}, is defined by: 1) his/her unique identity, ID, 
e.g. his/her name; 2) the state of the activity for this particular 
user, sua,  e.g. winning a game; 3) user assistance request 
state, sh, e.g. the user requests assistance with the activity 
from the robot; and 4) user location, l, the 2D location within 
the activity room that user, r, is located.  

3) Activity Model 
The overall activity is modelled as a set of discrete stages 

(e.g. start, facilitate, help, socialize, and 
end), },...,{ 21 g

aaaa sssS = , where g is the total number of 
discrete stages that occur during the entire activity. Each 
stage, referred to as an activity state, is a set containing a 
specific instance of discrete time step, k, and user assistance 
request state and user activity state for all 
players, },,{ ...2,1...2,1 n

h
n

ua
p
a

ssks = , where p represents a specific 

discrete activity state. 
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The aforementioned models are updated after each 

behavior command is received from the demonstrator. The 
sequence of behaviors to complete the overall activity is used 
to define the Demonstration Trajectory. 

4) Demonstration Trajectory 
A demonstration trajectory can be represented as 

 … , where j is the total 

number of state-behavior steps required for the complete 
demonstration. After the demonstration of the activity is 
completed, the demonstration trajectory is provided to the 
activity learning module.  
D.   Activity Learning 

The C4.5 decision tree classifier [22] is utilized to learn 
the state-behavior mapping using the demonstration 
trajectory as training data. We use the C4.5 decision tree 
classifier as it can account for incomplete data and prevent 
overfitting a model by pruning the decision trees. In general, 
the C4.5 decision tree classifier uses a heuristic, one-step 
look ahead (hill climbing), non-backtracking search through 
the space of all possible decision trees [22]. Namely, in our 
learning scenario the decision tree classifier generates all 
possible decision trees from the demonstration trajectory. It 
then searches through the generated trees to identify the 
decision tree that best models the demonstration trajectory. 
Herein, robot behaviors bi are the labels and the activity 
states  are the attributes being classified. Each unique path 

in the decision tree defines the decision rules for a robot 
behavior to be executed in a specific activity state. Thus, the 
final learned decision tree model is the policy, , 

which provides a state-behavior mapping for the 
demonstrated activity.  
E.    Interaction System 

Once the policy has been learned and training is over, the 
learned policy is then used by the interaction system to 
control Tangy’s physical behaviors during the group activity. 
The activity state representation can be obtained using the 
robot’s available sensors to identify the necessary model 
parameters via the World State Parameters modules.      

V.  LEARNING TO FACILITATE BINGO GAMES 

We have implemented our system architecture for Tangy 
to learn and implement the group activity of Bingo. We have 
selected Bingo as it has proven to be effective in promoting 
social bonding among residents and is effective in training 
cognitive skills including recognition, recall, and visual 
search [23]. The task was not known a priori by Tangy.  

Tangy has a known set of prior primitive behaviors (we 
obtained from our previous work [6]) which are presented in 
the fourth column of Table I. These behaviors include: 
greeting players, Bingo number calling, helping them play the 
game (e.g. requesting them to mark called numbers on their 
specific cards and celebrating when they have Bingo), telling 
jokes, navigating in the environment and valediction.  

The set-up of the Bingo game consists of four players 
sitting at a table facing Tangy with their own Bingo cards 
placed on top of the table in front of them, Fig. 3(a). Each 

card has a unique grid of 5x5 numbers randomly selected 
from 1-75. Players are also provided with red circular 
markers for marking the numbers on their cards. During a 
Bingo game, Tangy stands at the front of the room and calls 
out Bingo numbers in a random order, while the players mark 
these numbers on their cards if they have them. Players can 
request Tangy to come over to them to provide help by 
pressing a button on an assistance request device. If the card 
is outside of the robot’s field of view (fov) when it is 
providing assistance, Tangy can request the player to move 
the card closer. A player wins Bingo if he/she correctly marks 
five numbers in a row, column, or diagonal on his/her card. 
The first four columns of Table I present the expected robot 
behaviors for the Bingo game based on a given activity state, 
as well as the user assistance request state and user activity 
state for all players that the activity state is based on.  

 
Figure 3.  a) Bingo game scenario; b) Player’s assistance request device and 
Bingo Card. 

A.   Bingo Simulator 
The activity simulator for Bingo has been designed to 

represent the aforementioned game scenario. Through the 
GUI, the demonstrator can observe the world state and in turn 
control the robot’s primitive behaviors through voice 
commands. This allows for simple demonstration for non-
expert demonstrators.  Numerous Bingo games with different 
sequence of events (randomly determined) can be played 
using the simulator. The simulation environment is presented 
in Fig. 4.   

 

 
 

Figure 4.  Activity Simulation during a demonstration of a Bingo game: a) 
robot calls a number and player requests for assistance; b) robot requesting a 
player to remove marker from uncalled number.  

B.   Bingo Interaction with Tangy 
In the real-world implementation of the Bingo activity, 

Tangy utilizes its various sensors to determine the world state 
parameters. Namely, the robot identifies the following state 
parameters: 1) its own location in the environment using its 
on-board laser range finder and optical encoders, 2) the 
player identities, 3) the users’ activity states, and 4) 
assistance requests from the players. Robot localization is 
achieved using the on-board laser range finder and optical 
encoders. Namely, the Gmapping technique [24] is used to 
map the room that Tangy facilitates an activity in. An 
adaptive Monte Carlo technique [25] is then used to localize 
Tangy within the mapped room. Tangy uses one of the 2D 
cameras in its eyes to identify a player. Namely, the 
OKAOTM Vision software library [26] is used to recognize 
players based on their facial features. The state of an activity 
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for a particular user is identified using the 2D camera 
mounted on Tangy’s head to identify and assess the marked 
numbers on a player’s Bingo card, Fig. 3(b). A Speeded-up 
Robust Features (SURF) [27] based detection method is used 
to identify a unique identifier placed on each player’s card. A 
Hough transformation [28] based method is then used to 
identify Bingo numbers a player has marked and his/her 
specific user activity state. In cases where a card is outside of 
Tangy’s fov, the user activity state is considered occluded. 
An IR camera placed in the environment behind Tangy is 
used to capture 3D point clouds of the environment and 
recognize IR reflective triangles that are exposed when a 
player presses his/her button on the assistance request device, 
Fig. 3(b). A Hough transformation [28] based method is used 
to identify the triangles in IR images. The location of the 
player who requested assistance is determined by identifying 
the average position of the corresponding IR triangle in the 
3D point cloud of the environment. More details about 
Tangy’s sensors and detection methods can be found in [6]. 

VI. EXPERIMENTS 

The performance of the system architecture for learning 
and implementing Bingo games was investigated by 
determining the following: 1) the minimum number of Bingo 
demonstrations required to learn the activity policy, 2) if 
different demonstrators have any effect on the learned policy, 
and 3) the performance of the learned policies when 
implemented. The non-expert demonstrators who participated 
in the experiments were university students with no previous 
robot teaching experience. 
Scenario 1 - In this scenario, one non-expert demonstrator 
demonstrated the group activity of Bingo to Tangy through a 
total of five demonstrations. We then incrementally provided 
demonstrations to the activity learning module until we 
identified the minimum number of activity demonstrations 
required to learn the expected policy.  
Scenario 2 - In this scenario, five different non-expert 
demonstrators demonstrated the Bingo activity to Tangy a 
total of three times. The learned policies from each 
demonstrator were then compared.  
Scenario 3 - In this scenario, we used the policy learned from 
one of the demonstrators in Scenario 2. Namely, we applied 
the policy in the interaction system for Tangy to physically 
facilitate twenty Bingo games with four players. Players were 
university students (different from the demonstrators). 

A.   Results 
It took on average 9.6 minutes to demonstrate a complete 

Bingo game to Tangy. An average of 62 executed robot 
behaviors were implemented by each demonstrator during the 
Bingo learning stage.  
Scenario 1- Results: It was determined that three 
demonstration games were needed as the minimum number 
of demonstrations required to learn the Bingo game policy.  
Scenario 2 – Results: As expected, the exact same Bingo 
activity policy was obtained by the five demonstrators.   
Scenario 3- Results: The results of the Bingo game 
interactions are presented in Table I and Fig. 5. Tangy was 
able to successfully select and execute its behaviors in the 
corresponding activity states using the learned policy.  

B.   Discussions 
Overall, our system architecture was able to accurately 

learn and implement Bingo games with a group of players.  
The time taken for non-experts to demonstrate a complete 
bingo game using our architecture is much faster than the 
time it takes to play an individual game. Namely, a game 
took on average 30 minutes in our experiments, this is 
comparable to the length of time it would take to physically 
demonstrate a complete game to Tangy with a group of 
players. It took three Bingo game demonstrations for the 
policy to be learned, this was due to the fact that not every 
help scenario was represented in every game in the simulator, 
as the game scenarios were randomly generated. We verified 
that if all scenarios were present in a single Bingo game 
demonstration, then the activity policy was able to be 
effectively learned in one demonstration. 

 In our experiments, the players always followed Tangy’s 
instructions during the Bingo games. However, this may not 
be the case with our intended population, as older adults 
living in long-term care facilities may not act 
deterministically due to cognitive impairments that could 
negatively impact their memory, ability to focus, and ability 
to make decisions [5]. Prior to implementation in these 
settings, it may be beneficial to have input from the care staff 
regarding the behaviors of the robot. For example, having 
care staff adding alternative behaviors for activity states to 
promote person-centered care [29]. For our future work, we 
intend to investigate the use of LfD methods in order to have 
care staff demonstrate primitive robot behaviors that can be 

TABLE I.  EXECUTED ROBOT BEHAVIORS DURING IMPLEMENTATION 
Actual 

Activity 
State 

Actual 
Assistance 

Request State 

Actual User 
Activity State 

Actual Robot Behavior Success 
Rate 

Total Instances 
of Activity State 

Start ANR Occluded Greeting 100% 20 
Socialize ANR Occluded Joke 100% 28 
Facilitate ANR Occluded Call Bingo number 100% 666 

Help AR Bingo Celebrate 100% 20 
Help AR Incorrectly 

Marked 
Request to remove markers from numbers that 

have not been called 
100% 28 

Help AR Missing Numbers Request to mark numbers that have been called 100% 19 
Help AR Correctly Marked Encourage user to keep up the good work 100% 20 
Help AR Occluded Request to move card closer to robot 100% 7 

Navigate AR Occluded Navigate to user 100% 39 
Navigate ANR Occluded Navigate to front of room 100% 39 

End AR Occluded Valediction 100% 20 
*ANR = Assistance not required, AR = Assistance Required 
 



  

effective in obtaining compliance during such cognitively 
stimulating activities, in order to promote engagement and 
interaction. We will also investigate learning methods for 
dealing with uncertainties during the facilitation of a learned 
group activity in real-world settings.  

VII. CONCLUSIONS 

In this paper we propose a demonstration learning system 
architecture for a social robot to learn new group activities 
from non-experts. Namely, the system architecture allows 
non-experts to demonstrate group activities through a 
simulator that models a social robot, a group of users, and the 
activity. From these demonstrations, the architecture can then 
learn a policy to facilitate a new group activity. System 
performance experiments show that the system architecture 
efficiently and accurately learned the policy for facilitating 
the group activity of Bingo from demonstrations by non-
experts. The policy was also successfully implemented on a 
social robot to autonomously facilitate the group activity 
Bingo with multiple players.  
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Figure 5.  Robot Behaviors: a) Greeting; b) Call Number; c) Joke; d) Navigate to user; e) Request to remove markers from numbers that have not been called; 
f) Request to move card closer to robot; g) Request to mark numbers that have been called; h) Encourage user to keep up the good work; and i) Celebrate.  
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